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"~This paper is the second in a series of three that analyze a method of
dimensional reduction. It contains some results for approximation of functions
on the interval [-1,1] with elements from the nullspace of P, N > 1 , where
P 1is a second order ordinary differential operator. A special case of this is MA -
approximation by polynomials.
The one-dimensional results are used as a tool to prove similar versions in
! several dimensions. These multi-dimensional results are directly related to the ;
approximate method of dimensional reduction that was introduced in {13}, and they !
lead to statements about the convergence properties of this approach.
The third paper, which analyzes the adaptive aspects of the method, is

» forthcoming.
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1. Introduction

In a recent paper, [13], we introduced the concept of dimensionally reduced
solutions to an elliptic boundary value problem. These are obtained by projecting
(in the energy) the true solution of the boundary value problem in the n+l-dimen-

sional domain w x [-h,h] onto spaces of the form

N
VB oo b w.(x)¢.(y/h)|w, arbitrary} ,
N =] h|

j=0
where {¢j};=0 is a given set of functions on [-1,1], (x are coordinates on w
and y ranges over [-h,h]). For some basic ideas behind this concept, see the
introduction to [13]. In that paper the focus was on the right selection of the
¢j's. It was shown there that for a very wide class of problems the ¢j's should
be selected such that

span{¢j}§§al = N(Pk) .

where P 1is a second order differential operator intrinsic to the elliptic boundary
value problem.

The estimates of the error givem in [13] were asymptotic in h -+ 0. The present
paper, which was already announced there, treats convergence as N + « for a fixed
value of h . For convenience the fixed value of h 1is set equal to 1.

If the bilinear form associated with the elliptic boundary value problem
satisfies some kind of "inf-sup" condition, then it is well known that the rate
of convergence is the same as the rate of approximation (cf.[1]).

The results proven here are hence formulated as approximation-theoretic

estimates, and as such have interest regardless of the concept of dimensionally

reduced solutions.
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The results are all concerning approximation in the Lz- and Hl~norms,

i.e. ideally suited for second order problems. This is not crucial and similar
results can also be obtained, e.g., for the norms (fi|[%§||2dy + f1||A1/2u||2dy)1/2
introduced in [13]. (A here denotes a strictly positive definite-(unbounded)
operator in a Hilbert space H , and u 1s a function with values in H .)

For reasons of convenience the approximation results are formulated without
any boundary conditions. Various types of fixed boundary conditions can immediate-
ly be included based on the present proofs.

Estimates of the error introduced by dimensional reduction, as N goes to o,
do exist in the literature (cf. [5,7]). The problems considered in those two
papers come from structural mechanics. The elliptic operators have constant
coefficients, i.e. the ¢j's are polynomials. The results are not nearly as
strong as the ones established here. In [7] the estimates are based on the degree
of regularity in Ck-spaces; this is not very well suited to the regularity pro-
perties of solutions to elliptic boundary value problems, and therefore gives
crude estimates. The estimates in [5] are based on bounding the remainder in the
N-th order Taylor expansion. The estimates are very crude and do not give any
indication of the rate of approximation.

We now give a short review of the contents of this paper. 1In section 2 it

- -]

is shown that the set U N(Pk) (N denotes the nullspace) is demse in Hl for
k=1

any second order operator P = b f% a é%-, where both a and b are bounded from

above and away from 0O . This is the obvious generalization of the fact that the

polynomials are dense in Hl , and it also justifies the claim that the dimensionally
reduced solutions introduced in [13] will get arbitrarily close to the true solu-

tion. 1In section 3 the rate of approximation using functions in N(PN), N>1,

is linked to the regularity of u in spaces of the type D™ . This general

result though is not always optimal, as shown, e.g., by Theorem 4.1. Section &




is devoted to giving a necessary and sufficient condition for a certain rate of
approximation by polynomials (i.e., the case where the operator P 1is a constant-
coefficient operator). 1In section 5 this is carried over to results in several
dimensions -- directly relating to the concept of dimensional reduction. The exam-
ple treated in seétion 6 is of the same type as the numerical examples in [13].
Finally the appendix contains the proofs of several results about the eigenvalues
and eigenfunctions for two-point boundary value problems, as used in sections 2
and 3.

Note: Unless otherwise stated, all constants denoted by capital letters

are generic.
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2. A Density Result

Let a and b be two functions in L ([-1,1]) such that 3 constants

a , b with
o o

0<a < aly)

0 <b, = bly) .

By P we denote the differential operator

4 4
by

P is considered as a mapping LZ([-I,IJ) D0(p) » L2([-l,l]) . N(Pk) denotes
the null-space of the operator Pk for any integer k > 1 ., It is easily seen
that N(Pk) c Hl([-l,l]) . The first theorem in this section proves the density

of a certain class of functions associated with the operator P .

Theorem 2.1

ﬁ N(Pk) is dense in Hl([—l,lJ)
k=1

Proof

b4
By a change of variables, y' = Ib—%s) ds , and multiplication by -1 the
-1

operator P transforms into

d

a
rbdyv *

g

We can therefore for the proof of this theorem assume that P is given by

d

d .
o a(y) iy where a satisfies: 3 a constant a  with 0 < a < a(y) .

Define the operator Q by

Q) = D(P)nﬁl([-l,ll) and Q=P on D(Q) . Let fo denote the function
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and define the sequence {fi}:-o by

-4 1+1
£, = Q£ €NEH

0<>\°ixli . e <A

according to multiplicity). Let {um}m o be an orthonormal basis of eigenfunctions,

<A . denotes the eigenvalues of Q (repeated

m o+l

u corresponding to Am‘ fo can then be expanded as

f0 = z %n’m ’
m=0

and with this notation

T -1
fi z O"m>‘1n um
m=0

We now proceed to prove that any eigenfunction u ~can be approximated from

within U N(Pk) . The proof is by induction in m , and we start with m = Q0 .
k=1

For any i > 1 we have that

11,2
Heg ~ a5 29 fi”Hl

1/2

“clle

-1 .1 2
(ug = a5 Ag fi)”LZ

® 2 21-1 ) 2-1 =,
C A jzl (aj/ao) (AO/Aj) < C (*o/"‘o) (AO/AI) jZl ay

T —'-!’ =
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where we have used Lemma A.3 to guarantee that 4 # 0 . Since z a? <
i=1
and, by Lemma A.l, XO/A]_ < 1 this shows that
-1 .1 1
ay Ag £ > Y as i+« ,1in H ([-1,1]) ,
or u, € G N(Pk)
k=1
( ————— denotes the closure in Hl ) .
Now assume it has been proven for scme m > 1 that
-1 _ k
{uj}j-O C a1 NED)
From Lemma A.3 we know that o # 0 , and hence for any i > 1
-1 .4 T i
u ~a AT f, = x - ) a, /e A/A)u.,
m m m 1 m,i j-m+1(j m)(mj 3
m-1 i G "
= = €
where X1 jzo (aj/am)()\m/)\j> uj o1 NE™)

due to the induction hypothesis. As before the Hl - norm of the sum

W1

L)

can be estimated by

c (’/x_m/amXxm/xmﬂ)i-l/z (E 2)1/2 .

o
j=m+l 3

m+l

Because of the facts that:( Z GZ)I/Z < ®» and, by Lemma A.1l, Am/k <1
j=m+1 .

this shows that
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-1.1i
xm,i+amkmfi->um as i+
1
in H([-1,11) , i.e.
tu, oo £ U NE®)
k=1

This finishes the induction proof, and we conclude that

™ © k
{u,}, € UNE)
37370 Z ey

From the definition of Q it immediately follows that

@Y%) = wi-1,1n

and since {uJ. ¥ is complete in D(Q this proves that

3=0

g (1-1,1) S § NeEK)
k=1

Now if u€H1([-1,1]) we shall, by choosing ¢ =u(-1) and d =

1
(u(1)-u(-1))/f a~Y(s)ds , obtain that
-1

o1
u-c-df €H ({-1,11)

Since 1, fO € N(P) we see by a combination of this and the previously

proven inclusion that &
B ((-1,1]) = § NEY) l
k=1

L]
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Based on Theorem 2.1 we can easily prove a result concerning the dimensionally

reduced solutions as introduced in [13]. This result guarantees the fulfilment
of the goal stating that the dimensionally reduced solutions shall be able to get

arbitrarily close to the true solution.

Let w denote a domain in R" with a Lipschitz boundary.

Theorem 2.2

The set

J -]
{lv.®a ()|I€m,v €Hl(w) and q.€ U N(Pk) for 0<j<J}

is dense in Hl(w x [-1,1]) .

Proof

Follows immediately from Theorem 2.1 and the fact that

7 1 1
{ ) v.®w, (y)|JEN,v, €0 (@) and w,€H ([-1,1]) for 0<j<J}
LN A 3 i

i{s dense 1in Hl(w x [-1,1]) .

O




3. Estimates of the Rate of Approximation

In the previous section we proved the density of a certain class of functions

associated with the operator P = b ad; a diy . In this section we shall prove
some results concerning the rate of approximation. The first theorem is the

following.

Theorem 3.1

Assume that a,b €C2([-1,1]) » and let m be an integer > 0 . For any

€ > 0 there exists a constant Ce such that

VN>1 .

—m+e
inf | |u-v]| 22 C, N | ooy >

lul|
veNeEY L 0(

Note. |

11 denotes the norm IIPm(‘)H + {11
D(Pm) L2 2

One can of course combine the statement in Theorem 3.1 with interpolation by the
K-method (cf. [4]). This way it follows, that if ué(Lz;D(Pm))s . for some
’

0 <s <1, then for any ¢ > 0

. -ms+
inf [fuvl] , <o, N

v € NEY) L atoE™),

The smoothness requirement that a,b GCZ([-l,l]) is not necessary; as it
2
immediately will follow from this proof we only need that a/b is a C"-function.

This last remark applies to all of the results in this section.

In order to prove Theorem 3.1 we need an auxiliary result concerning uniform

approximation by polynomials. This result can be found, e.g., in chapter 6 of {6].

E—
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Lemma 3.1

c+d
2)’

Let ¢ be a function in CO([c,d]). Define & by 4(t) = ¢6——- cost +
te([0,n].
Let r be a non-negative integer. There exists a constant Cr such that for

any ¢ with $€Ct([0,1r]) the following estimate holds

inf|¢p|<C(N+1) ¥n>0 .

ey
r
Py

The infinum here is taken over all polynomials PN of degree < N .

) 0
and I'ir denote the norms in C ([e¢,d]) and Cr([o,w]) respectively.

We now continue with

Proof of Theorem 3.1

Like in the proof of Theorem 2.1 we may also here assume that P 1s given by
P =-£% a(y) i%-. Let fi i > 0 be defined as in that same proof. For any set

of coefficients {Ci}§=0 we have, using Lemma A.3, that

u- ) c, £, = ] a,(B,/a, - u,
qmg +1 =0 IV Y yeo 33

where z Bj y is the expansion corresponding to u . 1If by Py Ve denote the

N

polynomial p (x) = Z cixi , then the above can be rewritten as
i=0
N -1
u - 120 c fy Z a,(By/a; = Py Ny

and this leads to the equality

®

1,,2

N
2 2 -
1y [|u - c £, = a(B./a, = Py(r, 7))
) 120 17102 jzo S A

-

b o
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As in the proof of Theorem 2.1 Q denotes the restriction of P to
o
U(P)ﬂHl([-l,l]) . Let us now for a while assume that u€ U(Qk) .

Choose A so that {A-l}“ €[0,A] . Define a sequence of functions

j "3=0
¢M€C°([0,A]) » 1 <M, with the following properties
. 6, 07h) = 8,/ 0<j <M1
M) 3773 - -

rr, 8 =0 on (071 .

o~

Let ¢ denote the mapping

o () --% (1-cost): [0,r] + [0,A] ,

it then follows from Lemma A.l and Lemma A.2 that

-1 -1

-1 -1 2 ,
(j-l)'° (Xj )| > ¢/3° for any j > 1.

fe~ (a

This estimate tells us that it is possible to construct the ¢M's such that

M, § >1
ly(e(e))| < c_  sup ](j+l)2r6j/aj| .
0<j<M-1

Balllh

Now since uGD(Qk‘) we know that IB;]I < Ck(j+1) ul | o » and combining
L

this with Lemma A.4 we get

- 18, /a, | < ¢, (3+1) "2 |k |
377 =k 12




_ _ 3 R
MCARAEENIN DRSO .

12

i.e., we have for any r >k and M >1

G R i IC Y

Because of Lemma 3.1 we can now, for any r >k , M> 1, find a polynomial

pg of degree < N such that

. M -2 (r-k)+ k
i oyPyly < o 0w ok

We now go back to estimate the right hand side of (1)

"“ © M-1 oo
2 M, ~-1,,2 2 M., -1,,2 2
(. D oai(Bi/ampyAr N < [ al((ypd Ay N +2 ] 8L+
j=0 1 1 37N jo 1 MM jom 3
! q
' v 2 M, =1,\2
+2 ] ai (P (A7)
§=M J>M TN
The first and the third sum can be estimated by
Cr(N+1)'2rM4(r'k)+zcz az\)HQkuHZz <
j=0 3 L

H]

< Cr(N+l)-2rM4(r-k)+2l leul l22
L

the second by

s -4k .k 1,2 ~4k+1) ).k 112
¢, I G+1T|Q%]|, < c M [1Q%u]]
k L2k L2
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In summary we have therefore proven

N
Ilu - izo cifilliz < Cr((N+l)-2rM4(t-k)+2 + M-4k+l)lleu"22

forany r>k, N>0 and M>1 . Taking M= [(/N] + 1 ([*] denotes the

integer part) this estimate gives

N

2 -2k+1; ) ok 412

() o= T eyt l17, < )™ [ [Q 0] ]
Lo Tt 2=k L2

all provided that ueD(Qk) - Let M denote the L?'-projection onto linear
combinations of the functions f f

g ers Iy
(2) expresses that

-k+1/2|leu|| )
L

’

u-meul |, < 6 @v+1)
L
at the same time it is clear that

Hu-ngul| , < [Hull :
N2 L2

Applying interpolation by the K-method we get for any 0 <m < k

~Gel/DE
[ u-nyul lL2 < € (141) [1Q u] |L2

Now let m be fixed and k + @ , from the previous inequality we then get

Ve >0 3¢cC such that
€
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3 Hu-mgal| , < c o)™ |[Q%]] ,
L L

provided uev(Qm) . If we only know that u€D(P™) , then choose {gj }?=1—C'

f* N (Pm) such that

e
rh
o
A

<

0
1+
o

g
09
e
"
o
[ag)
o
R
<
I
I+
-

and any 1 # j-1 , (this is obviously possible). This way

m
A u- J 85 €0(Q™) and
s j=1
4_ (4)
| m
-' ) gjeN(Pm)
j=1
From (3) and (4) it now follows that
m m
o - Ty § &) - I gll ,=c ™.
3=t 1 3=1 L
m v -mte m
Q- T epl = e DT [PR]]
| i=1 L L
Since the image under IIN is contained in N(PN+1) , this estimate yields the
desired result for N > m . There are only a finite number of N's < m , and
hence the result can be obtained for all N by possibly increasing C. .




g = o

Based on Theorem 3.1 we can prove the following result concerning approximation in

the Hl-norm.

Theorem 3.2

Assume that a,bécz([-l,l]) » and let m be an integer > 1 . For any

€ > 0 there exists a constant Ce' such that

inf ||u—v|| if_Ce N-m+1+€ | ul | ¥YN>1
vENEY)

Proof

From Theorem 3.1 it follows that there exist ’\\;NGN(PN) such that

" -m+1+€
NPT

Hall
D(P)
N+1 o
Now choose VNEN(P ) with PvN = Vg and such that = u for y=+1.
It theun follows that

N-nﬂ-l+e .

lu=v || . < c|lPupv |l , = cliPev || , < ¢ | ul
N Hl N L2 N I‘2- € D(Pm)

O]

We can also easily prove a result relating to the dimensionally reduced solu-
tions as introduced in [13]. Let t»_C_:_]Rn be a domain with a Lipschitz boundary.

")
x= (xl,...,xn) denotes coordinates in w and y ranges over [-1,1]. P denotes

b(y) -aa— a(y) % considered as an operator Lz(wx [-1,1])_?_0('13’) - Lz(w x [-1,1]) .

y

I—
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Theorem 3.3

Assume that a,b€C2([—1,l]) and let m be an integer > 1 . Let u be

an element of Lz(m x [-1,1]) with 3%-:- Ugeoeos 38; u, uevdﬁ") . Then for any
1 n

€ > 0 there exist Ce (independent of u ) such that

inf ||u-v]] < € QM) m”“(z |12 + | lu]] )
vEV, gt (o x [-1,1]D) 1=1 % D(gm) 0™/
Here VN denotes the set { Z w (x)¢ (y)Iw €H (w)}, where {¢ }21_(-1 is a basis

for N(P )Y€ gl ([-1,1]) .

Proof

N
Let Y denote the orthogonal projection of Bu onto { Z w._j (5)4>j (y) fwjéLz(w)}
j=0

v,
in the Lz(w x [-1,1]) inner product. Then it is clear that % is the L2
1
projection of B % u onto the same subspace. From Theorem 3.1 we immediately get
i
Z 1k —<u-v*>|| + Bl -, <
L(wx[ll) L™ (v x [-1,1])
< c (uy) T z I ol gm0l

3™

N ok
% = *
for any function VN€VN+3 with PvN Yy (if N is odd such a vk will be

contained in VN+2 » but this is not necessarily so for N even). Now choosing

'Vﬁ so that also v{*] =u for y =+ 1 (this is obviously possible), it follows

that




zn <u—v*>|| + e wvnl], +
L2(o x [-1,1]) y L (w x [-1,1])

+ | Ju-val|| <
N2 x [-1,1]) ~

(ZH%‘ (v | , + Bl , ):
t2(a x [-1,1]) N2 e x [-1,1D)

-mtl+e a 3
C_(N+1) I H—ull . +HH
€ <1=1 % "lpm ] e




4. The Constant Coefficient Case - 1 Dimensional Results

The following two sections are devoted to the case where the operator P
has constant coefficients. In the previous section we estimated the rate of
approximation for gemeral P's , but the estimates established there do not have
exact inverse counterparts nor are they always optimal. As will be shown in this
section and the next, the question of approximation rate can be much further
clarified when P 1is a constant coefficient operator. We start with an analysis
of the 1 dimensional problem. The space N(Pk) » k> 1, consists simply of all
polynomials of degree < 2k-1 . Theorem 3.1 combined with interpolation says
that if uGHt([-l,I]) , then there exist polynomials Py » of degree N , such
that ||u—pN||L2 f_Ce(N+l)-t/2+€ . Under the present simplified circumstances
we can prove a better result. In the formulation of this result we use the Besov

spaces BE , £t >0, (cf. [4]) , instead of the ordinary Sobolev spaces Bt .

2,»

For an interpretation in terms of the spaces Ht use the inclusions Bt E;Bt

2,0

t-e

H valid for any t >0, € > 0.

Theorem 4.1
Let t be a given positive number. There exists a constant Ct such that
for any ueBg o([-1,1]) one can find a sequence of polynomials {pN};=0 , the
9

degree of Py < N, with

-t
Hu-pyll 5 < c )" uf] |
L B2 ®

Note. A similar theorem 18 also valid for the Hl-norm. The estimate here

becomes (for t > 1)

T Jul

t
B) o

| lu-pyl IHl < € (W1)
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The rate of approximation established in Theorem 4.1 is optimal in the

following sense.

Theorem 4.2

1f u€L2([-1,1]) and there exist a constant C and a sequence of poly-

. o
nomials {pu}uao » the degree of py < N, such that

”u-PNH 9 £ C(N+1)"t for some t >0 ,
L

t t/2
then u€(BZ,°°)loc N Bz,m .

Note. Theorem 4.2 is not an exact inverse of Theorem 4.1 since it only
guarantees that ueBgfi ([-1,1]) . But based on Theorem 4.2 we conclude that
for a general type function in B;,m([-l,l]) we cannot expect more than an approxi-
mation rate of (W1) ° .

Theorem 4.2 is optimal in that one can find u such that Hu—pNH < C[_:(N-i-l)-t".E

t/2+¢ t+e.
and u¢32,0° s “¢(Bz,w)loc for any ¢ >0 (cf. [12]) .
The proof of Theorem 4.1 is very simple, based on transforming u into a
periodic function and estimating the remainder of the k'th order Fourier expansion.
Details can be found, e.g., in [2].

The proof of Theorem 4.2 is not quite as simple. The cornerstone is the

so-called Bernsteins inequality

d 2
[GPyl] 5 = oN®lpgl] ,
dy’'N LZ N I-'2

valid for any polynomial of degree < N . For more details see [2] or (10].
As already noted Theorem 4.2, although optimal, is not an exact inverse of
Theorem 4.1. This can be taken as evidence that the standard Sobolev or Besov

spaces are not very good for expressing the kind of regularity needed for a
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certain rate of approximation by polynomials. They do not take into account the
well known fact, already noted by Timan (cf. [9]), that the polynomials have a
certain ability to absorb singularities at the end points of an interval.

Let L denote the operator - é% (1—y2) é%- with domain of definition

D(L) = {w€r?([-1,1]) | tuer?((-1,111 .

Now introduce the Besov spaces Ht, t>0, by

HE = @WProuty)

where p,q are two integers with 0 < p <t <q and 0 < s <1 is selected so
that p(l-s) + qs = t . Because of Theorem 14.1 in [8], which says that

@(Lty;oyy, , = DRI

) , and the reiteration theorem on p.50 of [4]
it follows that modulo equivalent norms Ht is independent of the choice of »p
and q .

We are now in a position to characterize completely the regularity needed

for a certain order of approximation by polynomials.

Theorem 4.3
Let t be a positive number. For any uéTﬁ: we can find a sequence of

polynomials {pN};-O » the degree of py < N, such that
-2t
Hu-pyll , < (1)} ul] .
N LZ Ht

On the other hand if xxeLz([-l,ll) and there exists a constant Cu and a

sequence of polynomials {p }u s the degree of p,, < N, such that
N N=0Q N —

T S APy ey e A % T
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-2t
| lu-py| le < €, (H1)

then uEHt and
H“H < c(c +| I“H )
Ht u L2

for some constant C independent of u .

Note. Cu here is not generic, it is the same constant in the two inequalities.

Proof

We start by proving the direct part. It is well known that the eigenfunctions

of L are the Legendre polynomials {Lk};;o . Also

L(Lk) = 1<(k+1)4’_k .

o

Let now u be an element of D(LP) and let ) @ £ be the Legendre series
w=0
P 2_4p 2
for u . Since u€D(L°) we know that ) a‘m* < ||ul] Define p, =
m P N

N =0 (L")

z umlm , then

=0

2 v 2 - § 2 4p -4p 2
Hu-pl1%, = I ol < (1) ] atm'® < (1) 7P| |u |
N2 el ® =N+l (Py
-2
i.e., [up |l , < (1) “Pl]u]] .
N2 - ()

Interpolation applied to this gives the desired result.

We now turn to the inverse. Assume that there exists polynomials Py of

degree < N such that




-2t
[ fu-pyl IL2 < ¢ (1)

Define IL0=P m>1.
Then

e 11, 2c. + ||u]l and
() I-'2 u L2

Mt 5 < Hup _f] o+ [|u-p ||, <cc2
m L2 om LZ 2m—l L2 t u

Since IILpnl le < anl Ipnl lLZ for any polynomial Py of degree < n , it

from above that for any non-negative integer ¢

et | | 2 = ¢, + Hull »

q g -c -¢ -22(g-t)m
[|L anLz 2 647C, C, 2

k
Now define v = Z A . We then get
m
m=0

-2tm

m>1

k
| v, | < DAt L+ Ha ll
k D(Lq) ZO | m L2 m L2

m=

= Cq,t(cu + Hul ILZ + u ool

<c 22(q-t)k
- q,t

€, + 1ull

provided q > t . At the same time

k
C Z 22(q-t)m)

m>1
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R ~2tk
[loe=vy I] 5 = [lu=p il , <2 :
ki 2 k2T
B -2kq
y defining S, = 2 we therefore have
-t .
S (TP TP T P R TN I
(LY
and since S~ 0 for k + = this proves that
weatpady, =Wt

L
q’
with

Hull ¢ < cq ey + Il |2
]

This theorem also allows a version formulated by using the spaces D(Lt)
instead of the corresponding Besov spaces. It is derived from the inclusions
0(L%) SH € D(L*™®) valid for any >0, € >0 .

A theorem similar to Theorem 4.3 but concerning approximation in the Hl
norm can be derived immediately based on Theorem 4.3.

For practical purposes, in determining the rate of approximation, the

following characterization of D(I9) (cf. [3]) will often be convenient:

0(Y) = (uerd([-1,11) luend((-1,1]) , -y>uer?I((-1,1)} .

[T
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Let us now give one simple example that shows how a result similar to

Theorem 4.3 can be established also in a case with non-constant coefficient.

Example 4.1

-1

Let P denote the operator a é%-a é% , where the function a is

given by

a for y>0

+ -
a(y) =

a, for y <20

with a, and a. being two positive constants. (This is the operator arising
in the numerical examples of [13].) ]

It is not difficult to see that the following set of functions is a basis

for N(PN):
1
¢O = 1 ’ ¢1 = a(y) y
y y
— 3 __—_1 -
oo = J Lo1(B)dt o ¢y 1 = ) f £, (B)dt 1<k<N-1 .
-1 -1

Here lk denotes the Legendre polynomial or order k . Performing the

Gram-Schmidt orthogonalization on the set (in that

¢0’ ¢19""¢2N_2,¢2N_1
sequence), in the inner-product <u,v>a = f}l u(y)v(yla(y)dy , we end up with
a new set of functions wo, wl""’wZN—Z’ ¢2N_1 . wk is a piecewise polynomial
of degree k . Let La denote the operator —a-l(y) é% a(y)(l—yz) é% , it is

then clear that
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k

n
L¥op-1 = jzl Lk ¥23-1

1<k<N .

Now we have because of the orthogonality of the wk's and the fact that
5 La is self-adjoint in Lz([-l,ll,a(y)dy)
<Lawk9sza = <’Pk,’-a'i’j>a =0 for j < k

'} i.e., Lawk = Akwk for any k .

It immediately follows that Xk = k(k+l) .

It also follows, since {wk};=0 is dense in Lz([-l,ll) , that {Ak,wk}:=o

3 is a complete set of eigenvalues and eigenfunctions for La . }
2 As in the proof of Theorem 4.3 we now get that
i
inf Ilu-vll 2 f_CN_2t
N L
véN(P

‘ (),IT

\4

Py. q
u€ (O(L); D(La))s,w

for any 0 <p<t<q, and 0 <s <1 chosen such that t = p(l-s) +gs .

In summary, we have found a singular operator La that characterizes the rate

of approximation with functions in N(PN) the same way that the Legendre

operator does with polynomials.

i

|
i
i

.
e e e
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5. The Constant Coefficient Case -~ Dimensions Higher Than 1

In this section we prove a result relating to the dimensionally reduced
solutions introduced in [13]. We give a characterization of the regularity
needed for a certain rate of approximation. The approximating functions are

N

of the form )} w (x)p
§=0 3 3

(y) where ijH]'(m) and Py is a polynomial of
degree j , i.e., the operator P has constant coefficients. w as before
denotes a domain in R" with a Lipschitz boundary and y ranges over [-1,1].

In the proof of the main result in this section the following lemma will

be very useful.

Lemma 5.1
Let HISEI%) be two Banach spaces with norms ll'lll and Il'llo respec-
tively.

Let {V };=0 be an increasing sequence of subspaces of H, and let £ be

N 1
a positive number. We assume that the following implication holds

u€H and inf ||u-q]|, < C (N+l)—B , YN>0
0 0—"u -
q €Vy

\

wu€H, and [[uf[; < clc, + [[u]lg) !

for some C independent of u. (Cu here is not generic, it is the same con-
stant in the two inequalities.)

As a result of this it follows that for any 0 < 8 < 1

u
|'

A4

lle(ﬂo;ﬂl)a,w and ||u||e’w < C(Cu + [|u||0)
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for some C independent of u . (As before Cu is not generic.)

Proof

Let 0 <8 <1 and assume that there exists a sequence of elements

$ dy GVN, N > 0 , such that
%L -68
% [u-qylly < c (D)
F*
4 Define
.! )LO = ql
A
- [
s n = q - q _ m 2_ 1 ’
m om ol 1
8 X -k6g
! then o= T aglly = Tl yllg < ¢, 27
o
At the same time
gl < ¢, + Hully  and
-m6B
[Irgllg = 1 gllg + T oyl <€ 0, 27, a1
That is, /LmGV o m>1, and
2
K mB (8-1) -mB
12 nally < Cq g0y + [lullp)2

From the first implication in the statement of this theorem it follows that

mB (6-1)

g(6-1
. |12 nally < cq g+ Hully + [1228@Dn |0
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B(1-6
o lIglly < cq gc, + [1ull)2™G=

We therefore get

k k
: : kB (1-6
2 gl < Lo Hrglly < eq gtc, +1lull)-2 B-8)

-kB

If we define 8, = 2 the following inequality now holds

k k

-9

Sk (”u = X ’LmHo + Sk” Z )Lmlll) b CS,B(Cu + Hullo) .
©=0 =0

a

Since S~ 0 for k + = this proves that

u € (Ho;Hl) 8, with

[lullg e = Cq, glc, + llullyp) .

Let us introduce the spaces

N n,
KR = (went® 2 uent®y  1=1,0..m
Xi

n
L here denotes -~ -a% (l-yz) Biy considered as an operator Lz(w x [-1,1) D

n,
oLy + 12

{w x [-1,1]) , and R 1is a non-negative integer.
N
Vy denotes the space { 1w, (x)p () |w €Hl(w)} where p, 1is a poly- :

nomial of degree j , j > 0 . We are then able to give the following character-

ization of approximation by the spaces VN in the Hl-norm.

e JM




Theorem 5.1

Let o be a given positive number. If \1€(H1(m x [—l,l]);KR)a/R’w for
some integer R > a and R > 2a/e , where € 1s a positive number, then there
exists a constant C such that

<cw)™E yn>o

inf [[u-qf]

q €V, B (wx [-1,1])

On the other hand if for some e > 0 there exist a constant C such that

inf | |u-q]] <coH) T . wN >0,

q €V, B (wx [-1,1])
then

u€ n (Hl(w X [—l,l]);KR

)
REIN,R>a a/R,=

Before we proceed with the proof of Theorem 5.1, let us state a corollary
that immediately follows from this theorem.
Modulo € this is the equivalent of Theorem 4.3 in more than one dimen-

sion.

Corollary 5.1

Let @ be a given positive integer. If u€ n (Hl(w X [-1,1]);KR)u/R w?

REIN,R>a

then for any € > 0 there exist a constant Ce such that

inf ||u-q]]| <c )T . N>,

qevN H (Iw X [-1)1])

On the other hand if for some e > 0 there exists a constant C such that
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tnf ||u-allgle, o c11p) S COHDTETE, wnz o0,

qu
then

1
e n  @lwx 1,115
u RE]N,R>0. w G/R,oo

Proof of Theorem 5.1

Assume that u€KR and R 1is an integer > 1 . Let AL denote the
N

N
orthogonal projection of Lu onto { Z wj (z)pj (y)leeLz(w)} in the Lz(m X
=0

{-1,1]1) inner product. Then it is clear that % VN is the Lz projection
N 3 i
of L 3% ¢ onto the same subspace. From Theorem 4.3 we immediately get
i
N
z HL—(u—v*)H + Ll <
L (w x [-1,1]) L™ x [-1,1])

2-2r{ %, 3
<C N g ull ~p + [ul] o~

oy 1
for any function Vi €VN with LvN vy ‘Now choosing v} so that also f VN(E’Y)dY

1
"f u(x,y)dy for any x€w (this is obviously possible) it follows that
-1

zu el + | lu-ve]| + v |l <
12w x [~1,1]) N2 x [-1,1D) ¥ N 26 x [-1,1])
<c Z IlL (u—v*>!l + llL<u-v*>ll 2 <
L (w x [-1,1D) L x [(-1,1])

2-2r{ S . 5 2-2R
Co N = uf| + [ [u]} = C, N {ul|
) (121”3"1 ocimy o™/ R K

PR ST TR SO




Using interpolation on this result we get that

2a

-2+ R

nf [lu-al| , < G N lalll, /g e s
. (w0 x [-1,1) ’

where ||lull|a/R,w denotes the norm on (Hl(w X [-l’l];KR)a/R,a' Since

20/e <R , i.e. 20/R < € , the direct part of this theorem immediately follows.
Let us now give a proof of the second part of the theorem. If

-2R- Re
infl]u—q]l 1 < CN @ for some R > a , then as in
q£VN H (U) X [-1’1])

the proof of Theorem 4.3 it easily follows that

a, n,
w€D(®) and -a—}a{—-uED(LR) ,

i
R R 1
i.e. u€K . 1If we apply Lemma 5.1 with Hy = K", Ho = H (w x [-1,1]) and
8 = a/R , we then get that
-20-¢€
inf [[u-q || < C(N+1)
Q§VN H (0 x [-1,1])

implies

1 .vR
u€@lH (v x [-1,1]);K )0. JR,® °*

for any integer R > a, i.e.

1 R
ué€ N H (0 x [-1,1]);K) -
REIN, R>o a/R,

PO,




For the conclusion of this section let us give a simple example that shows

the practical usefulness of Theorem 5.1 (or corollary 5.1).

Example 5.1

Let w be the interval [0,1] . Let Yy be a positive number and let
(1,0) denote polar coordinates around the point (1,1). We then consider func-
tions of the type u = Y (0) , where ¢ 1is an element of Cm([O,n/Z]) .

It is not difficult to prove that

u€ N @@ x [-1,11) ;K5

REIN,R>T /R,

for 0 < 1t <y, and that for a general choice of ¢ this is not so for any
T >y ({f Y*’]N_, then this is not so for any ¢ and T > vy except ¢ = 0). By
an application of corollary 5.1 we therefore get that

-2y+e

inf ||u-q|| < C_(N+1) , WN>0 |,

q €V, H (o x [-1,1])
for any € > 0 , and at the same time that for a general choice of ¢ (or for

any ¢ # 0 in the case Y¢IN) there exist no ¢ >0 and C, such that

inf [|u-q|] | < C, 1) wnso0 .
q€Vy, H (v x [-1,1]) '
A function of the type ILY¢ (0) 1is a typical example of a corner-singularity
as arising from the solution of an elliptic boundary value problem.
Theorem 5.1 (or corollary 5.1) is thus well suited to predict the optimal
order of convergence (modulo ¢ ) that one can in general expect by dimensional

reduction of elliptic boundary value problems.

\
\A
L]
!
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A result like this could not have been obtained by using the a~priori

knowledge of the regularity of solutions to elliptic boundary value problems

in terms of standard Sobolev spaces.
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6. A Simple Example of Dimensional Reduction

Let us consider the boundary value problem

Au = 0 in Jo,1[x]-1,1[
u=0 for x=0,1
du

a g(x) for y=+1
(n 1is the outward normal).
From [13] it follows that the optimal choice of basis functions for dimen-

o
gional reduction in this case is the polynomials. VN denotes the set

N 01
{ J w&) p,(y) |w,€8 ([0,11)} , where
j=0 h| J

3 pj is a polynomial of degree j .
o
Let e denote the projection of u onto VN in the inner product

11

) 2 2, 2 )

B(¢,¥) J J (ay 3y + oy 5 dvdx . It is clear that
0~
inf Hu - q |21 j_CB(u—uN,u—uN) <
o B (l0,13x[-1,1D)
qEVN

|12

< C inf ||u -q 1
9 B ([0,1]x[-1,1]) ,

q€EVy

and hence that the energy error B(u-uN, u-uN) is asymptotically in N equivalent

[*)

to the square of the distance (in Hl ) from u to VN .

If g has the Fourier series

g(x) = Z g, sin kr x
k=1
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then it immediately follows that u is given by 1

s "
u(x,y) = kzl %:_h__hg:’:;)&)_ o Sin kmx

In terms of regularity of u it is not difficult to prove that this formula leads

to the following three results:

i) VYe>0: } 312< K < w ﬁu€H3/2+a([0,1]x[-1,1])

k=1
~ ue N EN0,Lx[-1,1D)5KD
post 2 % .. REIN,R>8 ’
ii) ya > O: ngk <w
k=1

with 8 = a + 1/2

111) Vo> 0, € > 0: u€ N (Hl([O,l]x[—l,I]);KR)

REIN, R>6 8/R,»1

# z g§k26<°°.
with 8 =a + 1/2 + €. k=1

We consider two different choices for g

o A 6L s

g(x) = n/4

g(x) = x(x-1)

PRSP

For the first choice of g it follows that

- -]

2
) 8 kze <o for any 6 < 1/2 , and
k=1




similarly for the second choice

T 82k%® < o foramny 68 <5/2, and

Corollary 5.1 together with the regularity results ii) and iii) now
ensure that
In the case g(x) = n/4
B( ~4+e V
u-uy, u-uN) will converge to zero faster than N , Ve >0, but

on the other hand slower than N-4-€,\/e >0 .

In the case g(x) = x(x-1)
B(u-uN, u—uN) will converge to zero faster than N-12+€,¥/e > 0 , but

on the other hand slower than N—lz-e ,V/e >0 .

Figures 1 and 2 show the actual computed values of B(u-uN, u-uN) as a
function of N in the two different cases. Note that the asymptotic rate of
convergence is obtained already for a fairly small number of polynomials,

For details concerning the computation of the uN's see [13].

Instead of using Corollary 5.1 to obtain information about the rate of
convergence we could have used the regularity result i) and a 2-dimensional
version of Theorem 4.1. This way we could at most have predicted convergence
of the order of N-2+e and N-6+€ respectively, i.e. only half the actual
convergence rate.

In [13] we considered the same boundary value problem as here, only it was

on the domain [0,1]x[-h,h] for some h > 0 , and not on [0,1]x[-1,1] . From

N TP

ok
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39 ‘
the computational results there it follows that for a fixed N > 2 , ?
; - i
B(u-u;, u-ug) behaves like h2 , h+ 0, in the case where g(x) = n/4 .
N
‘ o
1 ( u: is the projection of u onto { ) W&(x) Pj(y/h) | ij Hl([O,l])} ) .
3=0

Comparing this to the result obtained here for g(x) = 7/4 it is seen that using

v N polynomials, y€({-1,1], is in some sense equivalent to having a domain of
thickness l/N2 . A similar feature has been noticed by comparison of the
standard h-version of the F.E.M. with the so-called p-version (cf. [2]).

e . In this example we used slight variations of the approximation results

E + proved in sections 4 and 5, namely with fixed boundary conditions = 0 at

PR 'y

x = 0,1 . The proofs of these results follow immediately from the proofs of

the similar results with no boundary conditionms.
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Appendix

In sections 2 and 3, we used some results concerning the eigenvalues and

eigenfunctions of the boundary value problem

u(-1) = u(l) =0 .

[ -]
a here is a function in L ([-1,1]) such that 3 a constant a with
0 < a < a(y) . From the theory of Sturm-Liouville systems it immediately

follows that the eigenvalues (repeated according to multiplicity) form a sequence:

0<A°ikli . . ixmf_xm_‘_l..
with + ® as the only limit point.
Lemma A.1l
With notation as above
A %A, for m#¥ m’ .
i.e. the eigenvalues are all simple.
Proof
Assume that for some m % m' Am = Am, . This means that the eigenvalue

A = Am(- Am,) has multiplicity > 1 . Let u and U be two linearly independent
eigenvectors corresponding to A , and let v = cu + da be a nontrivial linear

combination with the property that a %% =0 for y = -1 (such one obviously

, e




M Y

exists). The function v is then a solution to the initial-value problem

d d
e a dy v = Ay in [-1,1]
v =a g—-v = 0 for y = -1
dy ?

and because of the uniqueness of solutions to this problem, it follows that

v=0. Since v 1is a nontrivial linear combination of u and 3 this shows
~

that u and u are linearly dependent. We therefore have arrived at a contra-

diction, i.e., Am # Am' for m# m' .

i

It is well known that there exist constants 0 < C1 and 0 < C2 such that
2 2
Cl(m+l) A2 cz(m+1) .
By imposing an extra smoothness requirement on a we can obtain a much more

detailed statement.

Lemma A.2

If a €'C2([—1,l]) , then

A= (/0% c@)? + o)
n 1

{ -
where £ = J (a(y)) 1/2 dy .
-1
A proof of Lemma A.2 is found in chapter 4 of [11], and shall not be
repeated here.
Let {um}:_o denote a sequence of normalized eigenfunctions, u, corres-

ponding to Am . Let fo be given as in section 2, namely

£5(y) =




A=-3
5 Lemma A.3
The function fo has the expansion
1 .
’ fy = Z e u. :
3 m=0 ¢
where o # 0 for every m .
‘.cf‘;
! Proof
.
., That f; has a unique expansion is wellknown. The coefficient a is
1
:.: given by
1y
r 1l ds u (y) a
¢ %n J a(s) S Y y) dy
-1 -1

s of

i Now assume that for some value of m = m,oa = 0, 1i.e.

o
1y
2 ds u_(y)dy = 0 .
a(s) m
-1 -1
1 d d
Since umo(y) - Am dy a ay umo we get that

= —

y

1 d d i
J m)ds [‘d_y- a -a-; umo] (y) dy =0 .
1

Performing an integration by parts this yields

1
( 1 d t d
-:Jl 2(s) ds [a d_y- umo](l) - -.Jli E umo(y) dy = 0 ,

- 4
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; and the last integral here vanishes due to the fact that u 1) = u (-<1) =0 .

0 o
We therefore conclude that
) - d {
adyum-um-o for y=1 .

On the other hand U satisfies the differential equation .*

‘ o
. i
.
£, :
g [ S -
) G idy % T vy =0 in [-1,1] .
1 o o o ‘
X 4
! Because of uniqueness of solutions to the initial-value problem, this implies
T
. .
P that uo- 0 . We have thus arrived at a contradiction, meaning that @ $0 4
. o

for every m .
| L]

Again, by imposing an extra smoothness requirement on a , we obtain a

1

very detailed result concerning the decay-properties of the a 's

Lemma A.4

If a€ Cz([-l,l]), then jconstants 0 < Cl and 0 < C2 such that

1 ! h
milamlim for all m .

Proof

From [11] p. 176 we get the following asymptotic formula for um(y)

um(y) = Dm(a(y))-l/a [sin (Sm-i-_l& 5) -

L

- ;0-]:? T(E) cos (_(m"'TlM E)]+ 0((m+1)-2) s

¥ gy




Y e

1
where £(y) = J (a(s))-l/zds and L = §(1l) = J (é(s))-l/zds . The function
-1 -1
T 1is in Cl and the constants Dm satisfy

3 D (independent of m ) such that

1/p < le| < D for all m

Also, 0(+) here means uniformly in y . Let us now calculate o

1 1 ¥
@ = J £o(y) u (y)dy = J J ;%;)ds u (y)dy =
-1 -1-1

-2
Il + I2 + 0((mt+l) )

12 denotes the integral

y
f Zoyds | @ 1(e)cos (LE}D—’ a)dy :
1

By a change of variables from y to £ and an integration by parts, it

immediately follows that I, is 0((m+1)-2)

2

I is given as

1
1
. |
m
1

y
J ;%;) ds (a(y))nl/4 sin (ﬁ!%lll E) dy
1l

By a change of variables from y to £ and an integration by parts we

get that

s e e, 4 e




P

; 1
‘ L, =p ja—]('s—)ds 2 @)t . OT{T)TF - 4o .
-1

This immediately implies the existence of two constants 0 < C. and 0 < C

) 1 2
l such that
]
i
U |
¢.| ;
!y ;
§ ¢ for m sufficiently large. Now combining with Lemma A.3 and possibly changing .
f’ the constants C1 and C, we get the desired result.
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The Laboratory for Numerical Analysis is an integral part of the Institute
for Physical Science and Technology of the University of Maryland, under the
. general administration of the Director, Institute for Physical Science and
Technology. It has the following goals:

* To conduct research in the mathematical theory and computational
implementation of numerical analysis and related topics, with emphasis
on the numerical treatment of linear and nonlinear differential equa-
tions and problems in linear and nonlinear algebra.

* To help bridge gaps between computational directions in engineering,
physics, etc. and those in the mathematical community.

+ To provide a limited consulting service in all areas of numerical
mathematics to the University as a whole, and also to government
agencies and industries in the State of Maryland and the Washington
Metropolitan area.

*» To assist with the education of numerical analysts, especially at the
postdoctoral level, in conjunction with the Interdisciplinary Applied
Mathematics Program and the programs of the Mathematics and Computer
Science Departments. This includes active collaboration with government

b agencies such as the National Bureau of Standards.
F  To be an international center of study and research for foreign students
- in numerical mathematics who are supported by foreign governments or

exchange agencies (Fulbright, etc.).

Further information may be obtained from Professor 1. Babu¥ka, Chairman,
Laboratory for Numerical Analysis, Institute for Physical Science and
Technology, University of Maryland, College Park, Maryland 20742.







